翻訳と辞書
Words near each other
・ Bergaki
・ Bergakker
・ Bergakker inscription
・ Bergakungen
・ Bergall
・ Bergama
・ Bergama Acropolis Gondola
・ Bergama Belediyespor
・ Berezhany Castle
・ Berezhany Raion
・ Berezhnytsia
・ Berezhok
・ Berezhyntsi
・ Berezin
・ Berezin B-20
Berezin integral
・ Berezin transform
・ Berezin UB
・ Berezina River
・ Berezinian
・ Berezivka
・ Berezivka Raion
・ Berezka
・ Berezlogi
・ Berezne
・ Berezne Raion
・ Bereznehuvate Raion
・ Berezney
・ Berezniaky
・ Bereznianka


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Berezin integral : ウィキペディア英語版
Berezin integral
In mathematical physics, a Berezin integral, named after Felix Berezin, (or Grassmann integral, after Hermann Grassmann) is a way to define integration of elements of the exterior algebra (Hermann Grassmann 1844). It is called integral because it is used in physics as a sum over histories for fermions, an extension of the path integral.
==Integration on an exterior algebra==

Let \Lambda^n be the exterior algebra of polynomials in anticommuting elements \theta_,\dots,\theta_ over the field of complex numbers. (The ordering of the generators \theta_1,\dots,\theta_n is fixed and defines the orientation of the exterior algebra.) The Berezin integral on \Lambda^ is the linear functional \int_\cdot\textrm\theta with the following properties:
:\int_\theta_\cdots\theta_\,\mathrm\theta=1,
:\int_\frac\theta=0,\ i=1,\dots,n
for any f\in\Lambda^n, where \partial/\partial\theta_ means the left or the right partial derivative. These properties define the integral uniquely. The formula
:\int_f\left( \theta\right) \, \mathrm\theta=\int_\left( \cdots \int_\left( \int_f\left(\theta\right) \, \mathrm\theta_\right) \, \mathrm\theta_2 \cdots \right)\mathrm\theta_n
expresses the Fubini law. On the right-hand side, the interior integral of a monomial f=g\left( \theta^\right) \theta_ is set to be g\left( \theta^\right) ,\ where \theta^=\left(\theta_,...,\theta_\right); the integral of f=g\left( \theta^\right) vanishes. The integral with respect to \theta_ is calculated in the similar way and so on.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Berezin integral」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.